Aromatic nucleophilic substitution reactions of some 3-nitro-2-p-nitro-phenoxy-5-X-thiophenes with substituted anilines in methanol Giovanni Consiglio^a, Vincenzo Frenna^b, Susanna Guernelli^{a,*}, Gabriella Macaluso^b and Domenico Spinelli^a

^{a)}Dipartimento di Chimica Organica 'A. Mangini', Via S. Donato 15, I-40127 Bologna, Italy ^{b)}Dipartimento di Chimica Organica 'E. Paternò', Viale delle Scienze, Parco D'Orleans II, I-90128 Palermo, Italy

A series of optimised 'thiophene' sigma constant values has been calculated by using the reactions of some 3-nitro-2-p-nitrophenoxy-5-X-thiophenes with some substituted anilines. The susceptibility constants obtained are discussed in the framework of the reactivity-selectivity principle.

Keywords: nucleophilic substitution reactions, 3-nitro-2-p-nitro-phenoxy-5-X-thiophenes

Continuing our studies on the application of the Hammett equation to aromatic nucleophilic substitution reactions occurring in thiophene compounds,¹⁵ we now report data for the reactions of some 3-nitro-2-p-nitrophenoxy-5-Xthiophenes (1: X = H, Br, CONH₂, CO₂Me, Ac, SO₂Me, CN, NO₂) with various substituted anilines (2: Y = p-OMe, *p*-Me, H, m-Cl, p-Cl) in methanol at 0-40 °C. This study is aimed at verifying the general applicability of 'thiophene' σ -values¹⁵ and to gain information about the influence of the nature of the nucleophilic amine on the susceptibility constant $\rho(Y)$.

All the reactions are first order in both substrate and nucleophile. Therefore, they proceed via the generally accepted attachment-detachment mechanism¹⁶ with the formation of the first transition state as rate determining step.

The logarithmic relative kinetic constants $[\log (k_{\rm X}/k_{\rm H})]$ for the reactions of **1** with a given Y substituted aniline have been correlated using a monolinear relationship of the Hammett type with the σ_p^{-} constants¹⁷ defined from acidity constants of anilinium ions. To optimise the statistical results and obtain a homogeneous set of 'thiophene' σ constants pertaining to the reaction system investigated, we have utilised Brown's method (extended selectivity treatment).18 The scale of optimised 'thiophene' σ_{X^-} values has been 'anchored' to the $\sigma^$ constant for NO₂ as the substituent (σ_{NO_2} ⁻ 1.23). A comparison of the anchored thiophene σ - constants, $\sigma_{anc.}$ -, obtained for anilino substitution reaction of 1 with those previously calculated for the reactions of some 2-L-3-nitro-5-X-thiophens with aniline¹⁵ or piperidine¹⁵ in methanol (σ_{T} -), confirms the general applicability of the σ_{T} set substituent constants to reactions occurring on thiophene systems. Using σ_{anc} values, we have calculated optimised $\rho(Y)$ values (Tables 1 and 2).

In spite of variations of absolute reactivity with changing Y substituent in the aniline and X substituent in the substrate, the reaction selectivity, as measured by $\rho(Y)$, is insensitive to the nucleophile variation, pointing out a failure of the selectivityreactivity principle.19

On the other hand, the general applicability of such relationships as the Hammett-type equations to thiophene compounds shows that by changing the 5-X substituent the transition state structure changes regularly getting closer to the intermediate σ -complex as the reactivity decreases.

Aromatic nucleophilic substitutions such as those reported here are not simple processes in which only a single bond is formed and only a single bond is broken in the transition state but the pattern of bond making and bond-breaking processes is more complicated. Indeed, the hydrogen-bonding interaction between the incipient 'ammonium hydrogen' and oxygen atoms of the 3-nitro group plays an important role in determining the energy of the first transition state of the attachment-detachment mechanism.21

Structure-reactivity relationships have been conveniently visualised by using a More O'Ferrall-Jencks diagram²² (Figure 1).

With increasing basicity of the aniline the transition state moves back with respect to hydrogen-bonding but the degree

JO₂

Ç_T

Ń

R

OC₆H₄NO₂-p

+ H₂NC₆H₄Y

NO₂

NH2C6H4Y

OC₆H₄NO₂-p

OC₆H₄NO₂-p More O'Ferrall-Jencks structure-reactivity diagram Fig. 1

О---н---N

R_{HB}

 NO_2

* To receive any correspondence. E-mail: guernel@ms.fci.unibo.it

J. Chem. Research (S). 2001.266-267 J. Chem. Research (M), 2001, 0770-0781

Ъ

ŇĤC₆H₄Y

OC4H4NO2-D

--- HNHC₆H₄Y

Table 1 Logarithmic kinetic constants and activation parameters^{*a*} for the reaction of 3-nitro-2-*p*-nitrophenoxy-5-X-thiophenes (1) with substituted anilines $(YC_6H_4NH_2)$ in methanol at 20 °C

 Х/(р <i>К</i> _a) <i>ь</i>	<i>p</i> -OMe (5.36)	<i>p</i> -Me (5.08)	H (4.60)	<i>m</i> -Cl (3.52)	<i>p</i> -Cl (3.98) –4.993 51.5, –164	
H	-3.624 48.0, -150	-4.022 48.9, -155	-4.476 50.7, -157	-5.498 54.6, -164		
Br	-2.392	-2.799	-3.249	-4.187	-3.801	
	38.2, -160	43.0, -152	44.3, -156	48.3, -160	45.6, -162	
CONH ₂	-1.833	-2.329	-2.708	-3.753	-3.206	
	36.1, -156	39.5, -155	40.3, -159	46.1, -159	43.1; -159	
CO ₂ Me	-1.474	-1.859	-2.274	-3.329	-2.849	
	33.9, -157	35.6, -160	38.3, -157	42.4, -164	40.3, -162	
СОМе	-0.996	-1.407	-1.802	-2.848	-2.381	
	32.2, -154	32.8, -160	36.2, -156	38.5, -168	36.1, -167	
SO ₂ Me	-0.800	-1.107	-1.562	-2.632	-2.133	
	31.3, -150	32.5, -155	34.5, -157	42.0, -152	37.3, -158	
CN	–0.710	-1.112	-1.549	-2.568	-2.071	
	31.5, –151	31.9, 157	35.8, -152	40.9, -154	36.2, -161	
NO ₂	-0.499	-0.099	-0.353	-1.396	-0.879	
	27.7, -140	27.8,- 148	30.6, -147	32.1, -162	31.6, -154	

^{*a*}For each couple X–Y the number on the first line represents log *k* calculated at 20 °C from activation parameters; the numbers on the second line are, respectively, $\Delta H^{\pm}/\text{kcal/mol}$ at 20 °C, and $\Delta S^{\pm}/\text{cal/mol/K}$ at 20 °C. The kinetic constants, *k*/l/mol/s, measured in the range 0–40 °C were reproducible to within ± 3 %; the maximun error of ΔH^{\pm} is ± 0.5/kcal/mol; the maximun error of ΔS^{\pm} is ± 2 cal/mol/K. ^{*b*}D. Spinelli, G. Consiglio, R. Noto and V. Frenna, *J. Org. Chem.*, 1976, **41**, 968.

Table 2 Substituent constants

	Х	Н	Br	CONH ₂	CO ₂ Me	COMe	SO ₂ Me	CN	NO ₂
1.	σ_n^{-a}	0.00	0.30	0.62	0.74	0.82	1.05	0.99	1.23
2.	σ_{p}^{p-b}	0.00	0.41	0.59	0.72	0.88	0.95	0.97	1.37
3.	$\sigma_{anc}^{p} - b$	0.00	0.37	0.53	0.65	0.79	0.86	0.87	1.23
4.	σ_{T}^{-c}	0.00	0.35	0.51	0.65	0.80	0.83	0.87	1.23

^a Values from ref. 16. ^b See text. ^c Values from ref. 14.

of carbon–nitrogen bond formation is expected to be only slightly affected. This agrees with the invariance of the $\rho(Y)$ value with changing Y.

On the other hand, β values near to unity point out that the substituents in the aniline moiety cause, with respect to X = H, a change in the position of the rate determining transition states along the reaction co-ordinate which is much the same for the two reactions, independently of the aromatic substrate.

In conclusion both $\rho(Y)$ and $\beta(X)$ values are nearly independent of the substituents, respectively, in the aniline and in the aromatic substrate, pointing out similar ranges of rate determining transition states.²³

References: 27

Tables: 7

Figure: 1

Received 8 January 2001; accepted 5 June 2001 Paper 01/704

References cited in this synopsis

- G. Spinelli, C. Consiglio. Dell'Erba and M. Novi, *Thiophene and Its Derivatives*, Wiley and Sons, New York, 1991; chapter II; G. Consiglio, V. Frenna and D. Spinelli, *Topics in Heterocyclic System-Synthesis, Reactions and Properties*, 1996, 1, 169; V. Frenna, D. Spinelli, G. Consiglio, C. Dell'Erba, M. Novi and G. Petrillo, *Gazz. Chim. Ital.*, 1997, 127, 753.
- 15 G. Consiglio, V. Frenna, C. Arnone, E. Mezzina and D. Spinelli, J. Chem. Soc., Perkin Trans II, 1994, 2187, and references therein.
- 16 (a) J.J. Ryan and A.A. Humffray, J. Chem. Soc. (B), 1967, 300, and references therein; J.F. Bunnett, E.W. Garbisch and K.M. Pruitt, J. Am. Chem. Soc., 1957, **79**, 385; (b) D. Spinelli, C. Dell'Erba and A. Salvemini, Ann. Chim. (Italy), 1962, **52**, 1156.
- 17 A.J. Hoefnagel and B.M. Wepster, J. Am. Chem. Soc., 1973, 95, 5357.
- 18 H.C. Brown and L.M. Stock, J. Am. Chem. Soc., 1962, 84, 3298.
- 19 J.E. Leffler and E. Grunwald, *Rates and Equilibria of Organic Reactions*, Wiley, New York, 1963, p. 162.
- 21 J.F. Bunnett and R.J. Morath, J. Am. Chem. Soc., 1955, 77, 5051.
- 22 R.A. More O'Ferrall, J. Chem. Soc. (B), 1970, 274; W. P. Jencks, Chem. Rev., 1972, 72, 705.
- 23 D.Spinelli and G. Consiglio, J. Chem. Soc., Perkin II, 1975, 989.